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Abstract

In this paper, the local stress intensity factor solutions for kinked cracks near spot welds in lap-shear specimens are
investigated by finite element analyses. Based on the experimental observations of kinked crack growth mechanisms in
lap-shear specimens under cyclic loading conditions, three-dimensional and two-dimensional plane-strain finite element
models are established to investigate the local stress intensity factor solutions for kinked cracks emanating from the
main crack. Semi-elliptical cracks with various kink depths are assumed in the three-dimensional finite element analysis.
The local stress intensity factor solutions at the critical locations or at the maximum depths of the kinked cracks are
obtained. The computational local stress intensity factor solutions at the critical locations of the kinked cracks of finite
depths are expressed in terms of those for vanishing kink depth based on the global stress intensity factor solutions and
the analytical kinked crack solutions for vanishing kink depth. The three-dimensional finite element computational
results show that the critical local mode I stress intensity factor solution increases and then decreases as the kink depth
increases. When the kink depth approaches to 0, the critical local mode I stress intensity factor solution appears to
approach to that for vanishing kink depth based on the global stress intensity factor solutions and the analytical kinked
crack solutions for vanishing kink depth. The two-dimensional plane-strain computational results indicate that the crit-
ical local mode I stress intensity factor solution increases monotonically and increases substantially more than that
based on the three-dimensional computational results as the kink depth increases. The local stress intensity factor solu-
tions of the kinked cracks of finite depths are also presented in terms of those for vanishing kink depth based on the
global stress intensity factor solutions and the analytical kinked crack solutions for vanishing kink depth. Finally, the
implications of the local stress intensity factor solutions for kinked cracks on fatigue life prediction are discussed.
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1. Introduction

Resistance spot welding is widely used to join sheet metals for automotive components. The fatigue lives
of spot welds have been investigated by many researchers in various types of specimens, for example, see
Zhang (1999). Since the spot weld provides a natural crack or notch along the weld nugget circumference,
fracture mechanics has been adopted to investigate the fatigue lives of spot welds in various types of spec-
imens based on the stress intensity factor solutions at the critical locations of spot welds (Pook, 1975, 1979;
Radaj and Zhang, 1991a,b, 1992; Swellam et al., 1994; Zhang, 1997, 1999, 2001).

As discussed in Swellam et al. (1992), the spot weld fatigue failure process can be divided into three
stages in lap-shear specimens. Stage I corresponds to the crack initiation and growth as kinked cracks ema-
nating from the critical locations of the main crack along the nugget circumference up to about 18% of the
sheet thickness. Stage II corresponds to the crack propagation through the sheet thickness. Stage III cor-
responds to the crack propagation through the width of specimens. Note that the fatigue life of a spot weld
is in general dominated by stages I and II of fatigue failure process. Therefore, accurate stress intensity fac-
tor solutions for kinked cracks emanating from the critical locations of the main crack along the circum-
ference of spot welds through the sheet thickness are needed to estimate the fatigue life based on the linear
elastic fracture mechanics.

First, the global stress intensity factors for a main crack and the local stress intensity factors for a kinked
crack are defined here. Fig. 1 shows a schematic plot of a main crack and a kinked crack with the kink
depth d and the kink angle a. Without the kinked crack (d = 0), KI, KII and KIII represent the global mode
I, II and III stress intensity factors for the main crack, respectively. With the kinked crack (d 5 0), kI, kII
and kIII represent the local mode I, II and III stress intensity factors for the kinked crack, respectively. Note
that the arrows in the figure schematically represent the positive global and local stress intensity factors KI,
KII, KIII, kI, kII and kIII. For kinked cracks, when the kink depth d approaches to 0, the in-plane local stress
intensity factors kI and kII can be expressed as closed-form functions of the kink angle a and the global KI

and KII for the main crack (Bilby et al., 1978; Cotterell and Rice, 1980). The closed-form kinked crack solu-
tions will be used as the basis to present our numerical stress intensity factor solutions in this investigation
in contrast to those of Pan and Sheppard (2003).

In order to obtain accurate stress and strain distributions and/or stress intensity factor solutions for spot
welds in lap-shear specimens, three-dimensional finite element analyses have been carried out by various
investigators (Radaj et al., 1990; Satoh et al., 1991; Deng et al., 2000; Pan and Sheppard, 2002, 2003). Radaj
d

α

Main Crack

Kinked Crack

kII

kI

KI

KII

KIII

kIII

Fig. 1. A schematic plot of a main crack and a kinked crack with the kink depth d and the kink angle a.
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et al. (1990) used a finite element model where plate and brick elements are used for sheets and spot welds,
respectively, to obtain the global stress intensity factor solutions along the nugget circumference for the
main cracks in various specimens. Satoh et al. (1991) conducted three-dimensional elastic and elastic–plas-
tic finite element analyses to investigate the stress and strain distributions in the symmetry plane near spot
welds in lap-shear specimens to identify the fatigue crack initiation sites under high-cycle and low-cycle
fatigue loading conditions. Deng et al. (2000) conducted elastic and elastic–plastic three-dimensional finite
element analyses to investigate the stress fields near the nuggets in lap-shear and symmetrical coach peel
specimens to understand the effects of the nugget size and the thickness on the interface and nugget pull
out failure modes. Pan and Sheppard (2002) also used a three-dimensional elastic–plastic finite element
analysis to correlate the fatigue lives to the cyclic plastic strain ranges for the material elements near the
main notch in lap-shear specimens and modified coach-peel specimens. Pan and Sheppard (2003) conducted
a three-dimensional finite element analysis to investigate the critical local stress intensity factor solutions for
semi-elliptical kinked cracks emanating from the main crack along the nugget circumference in lap-shear
specimens and modified coach-peel specimens.

Recently, Lin and Pan (2004) and Lin et al. (in press) took the two-dimensional kinked crack approach
of Newman and Dowling (1998) to investigate the fatigue lives of spot welds in various types of specimens
of dual phase steel, low carbon steel and high strength steel. The fatigue life predictions based on the global
stress intensity factor solutions and the closed-form kinked crack solutions agree well with the experimental
results. Note that the closed-form local stress intensity factor solutions for kinked cracks used in Newman
and Dowling (1998), Lin and Pan (2004) and Lin et al. (in press) are supposedly for kinked cracks with a
vanishing kink depth. The fatigue models in Newman and Dowling (1998), Lin and Pan (2004) and Lin
et al. (in press) are based on the assumption that the local stress intensity factor solutions remain relatively
constant as kinked cracks grow through the thickness in their two-dimensional crack growth models. It is
necessary to understand the dependence of the local stress intensity factor solutions on the kink depth at the
critical locations of spot welds in lap-shear specimens in order to validate the engineering fatigue models in
Newman and Dowling (1998), Lin and Pan (2004) and Lin et al. (in press). For lap-shear type specimens,
the global stress intensity factors vary from point to point. The kinked crack geometry observed in exper-
iments is curved and three-dimensional. The critical local stress intensity factor solutions for three-
dimensional kinked cracks in lap-shear type specimens have been obtained by Pan and Sheppard (2003)
by three-dimensional finite element analyses. Their local stress intensity factor solutions for semi-elliptical
kinked cracks are expressed in terms of the mode I stress intensity factor solutions for semi-elliptical surface
cracks of Newman and Raju (1981) for their specific geometries of specimens.

Fig. 2(a) and (b) schematically shows a lap-shear specimen and a square-cup specimen, respectively, used
to investigate the strength and fatigue lives of spot welds. For clear demonstration of spot weld locations,
only halves of the specimens are shown. The spot welds are idealized as circular cylinders and shown as
shaded half cylinders in the figures. The half lap-shear specimen with the thickness t, the width W, the
nugget radius b, the overlap length V of the upper and lower sheets, and the length L is shown in
Fig. 2(a). Lap-shear specimens are often used to investigate the behavior of spot welds under shear
dominant loading conditions. Note that two spacers of the length S are attached to the both ends of the
lap-shear specimen in order to induce a pure shear to the interfacial plane of the nugget for the two sheets
and to avoid the initial realignment of the specimen during testing. The square-cup specimen with the thick-
ness t and the width E is shown in Fig. 2(b). For the given geometry of the square-cup specimen, the nugget
has a nearly uniform loading condition and nearly uniform stress intensity factor solutions along the nugget
circumference when the ratio of the width E to the nugget diameter is large and the specimen is under pure
opening loading conditions (Wang et al., 2005). The details on the design of square-cup specimens were
discussed in Wung and Stewart (2001).

Axisymmetric finite element analyses were used to investigate the local stress intensity factor solutions at
the kinked crack tip in cup specimens (Wang et al., 2005). The computational results indicate that when the
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Fig. 2. Schematic plots of two types of spot weld specimens are shown. (a) A half lap-shear specimen under the applied force (shown as
the bold arrows). (b) A half square-cup specimen under the applied force (shown as the bold arrows).
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kink depth decreases, the local mode I stress intensity factor solution for a sharp main crack and a circular
main notch approaches to that based on the closed-form solution for a kinked crack with a vanishing kink
depth and a kink angle of 90�. The computational results also indicate that when the kink depth increases,
the local mode I stress intensity factor solution increases substantially. This trend is quite different from
that based on the three-dimensional finite element analysis by Pan and Sheppard (2003) for lap-shear type
specimens. Therefore, an investigation of the local stress intensity factor solutions for kinked cracks in lap-
shear specimens is conducted and the results are reported here. Based on the work of Wang et al. (2005) as
mentioned earlier, the computational results are presented in a normalized form with respect to the closed-
form solution for kinked cracks with a vanishing kink depth in this investigation, in contrast to those pre-
sented in Pan and Sheppard (2003) based on the surface crack solution of Newman and Raju (1981).

In this paper, a three-dimensional finite element model based on the finite element model for two circular
plates with connection (Wang et al., 2005) is first used to obtain the global stress intensity factor solutions
along the nugget circumference for the lap-shear specimens of Lin et al. (in press). The distributions of the
local stress intensity factor solutions for kinked cracks with a vanishing kink depth along the nugget cir-
cumference are then obtained from the global stress intensity factor solutions and the analytical kinked
crack solutions for vanishing kink depth. Next, based on the experimental observations of the kinked crack
growth mechanisms in lap-shear specimens under cyclic loading conditions in Lin and Pan (2004) and Lin
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et al. (in press), three-dimensional finite element models for kinked cracks emanating from the critical loca-
tions of the main crack are established to investigate the local stress intensity factor solutions. Semi-ellip-
tical kinked cracks emanating from the critical locations of the main crack along the nugget circumference
and various kink depths are considered. The local stress intensity factor solutions at the critical locations or
at the maximum depths of the kinked cracks are obtained. A two-dimensional plane-strain finite element
model for kinked cracks is also established to investigate the local stress intensity factor solutions and to
examine the applicability of using a two-dimensional kinked crack model to characterize the local stress
intensity factor solutions at the critical locations of the semi-elliptical kinked cracks. The local stress inten-
sity solutions for kinked cracks emanating from continuous lap joints are also presented under combined
tension and bending conditions. Finally, the implications of the local stress intensity factor solutions for
kinked cracks in lap-shear specimens for fatigue life prediction are discussed.
2. Local stress intensity factor solutions for kinked cracks

The fatigue cracking mechanisms of spot welds in different types of specimens are different due to dif-
ferent geometries and loading conditions. The kink paths in different types of specimens were discussed
in Lin and Pan (2004) and Lin et al. (in press). Fig. 3(a) shows a schematic plot of the symmetry cross-sec-
tion of a lap-shear specimen with the sheet thickness t under the applied force P. Fig. 3(b) shows a micro-
graph of the symmetry cross-section near a failed spot weld in a lap-shear specimen of dual phase steel sheet
of 0.65 mm thickness (Lin et al., in press). The kinked crack appears to grow from the main notch or crack
tip to the surface of the sheet. Fig. 3(c) shows a schematic plot of the symmetry cross-section near a spot
Fig. 3. (a) A schematic plot of the symmetry cross-section of a lap-shear specimen and the applied force P shown as the bold arrows.
(b) A micrograph of the symmetry cross-section of a failed spot weld in a lap-shear specimen of dual phase steel sheet under cyclic
loading conditions. (c) A schematic plot of the symmetry cross-section near a spot weld.
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weld. The fatigue crack can be idealized to grow from the main notch or crack tip with a kink angle a as
shown in Fig. 3(c). The kink angle a appears to be near 90� for lap-shear specimens under cyclic loading
conditions. Note that as shown in a parametric study in Lin and Pan (2004), when the selection of the kink
angle is close to 90�, the fatigue life prediction will not be critically dependent upon the selection of the kink
angle. The computational results for the critical local stress intensity factor solutions for semi-elliptical
kinked cracks emanating from the main notch at different angles in Pan and Sheppard (2003) also suggest
that the local stress intensity factor solutions do not depend critically on the kink angle.

Fig. 3(c) also schematically shows that a kinked crack emanating from the critical location (point A as
shown in Fig. 3(a)). Note that due to symmetry, kinked cracks can emanate from either of the two critical
locations (points A and B as shown in Fig. 3(a)). However, only one of them will become the dominant
kinked crack and lead to the initial through-thickness failure of the spot weld in lap-shear specimens
(Swellam et al., 1992). This is the reason that we concentrate on single kinked crack for lap-shear specimens
in our computations here. Microscopically speaking, the main crack tips as observed from the sectional
views of spot welds usually have finite root radii. The effects of the notch geometry on the local stress
intensity factor solutions for kinked cracks have been studied in Wang et al. (2005). However, when the
main crack is treated as a sharp crack, the global stress intensity factor solutions can be used to correlate
the fatigue lives of spot welds, see Zhang (1999).

When the main crack is considered as a sharp crack and the kink depth approaches to 0, the in-plane
local stress intensity factors kI and kII can be expressed as closed-form functions of the kink angle a and
the global stress intensity factors KI and KII for the main crack. The local kI and kII solutions can be
expressed as (Bilby et al., 1978; Cotterell and Rice, 1980)
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For mode III loadings, without a rigorous proof as in Cotterell and Rice (1980) for in-plane mode, the local
kIII solution can be expressed as
kIII ¼ cos
a
2
KIII ð3Þ
It is noted that the kinked crack growth in lap-shear specimens is under local combined mode I, II and III
loading conditions.

Note that Eqs. (1)–(3) are only appropriate when the kink depth approaches to 0. In order to predict the
total fatigue lives of spot welds based on the linear elastic fracture mechanics, the local kI, kII and kIII solu-
tions are needed for both the infinitesimal and the finite kink depth in specimens. The local kI and kII solu-
tions for kinked cracks with a finite kink depth were presented by Kitagawa et al. (1975) and Lo (1978). But
the solutions presented by Kitagawa et al. (1975) and Lo (1978) are restricted to the problems of kinked
cracks in a two-dimensional infinite solid under prescribed uniform tensile stress at infinity. For semi-
elliptical kinked cracks in spot weld specimens with complex geometry and non-uniform remote stress state,
numerical methods such as boundary element or finite element methods may be a convenient way to extract
the local kI, kII and kIII solutions.

The local stress intensity factor solutions for kinked cracks can be used to predict the fatigue lives of spot
welds in various types of specimens based on the fatigue models of Newman and Dowling (1998), Lin and
Pan (2004) and Lin et al. (in press). Past research on the stress intensity factors emphasizes the global stress
intensity factors (Swellam et al., 1994; Zhang, 1997, 1999, 2001; Pan and Sheppard, 2003; Wang et al., in
press). Based on the experimental observations on low carbon steel and high strength low alloy steel,
Swellam et al. (1992) concluded that the stage I fatigue life corresponding to kinked crack initiation and
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growth up to 18% of the sheet thickness constitutes more than 40% of the total fatigue life of the low carbon
steel specimens for the life range of 105–107 cycles as compared to stage II fatigue life for through-thickness
crack propagation and stage III fatigue life for cross-width crack propagation in lap-shear specimens.

For shallow semi-elliptical kinked cracks emanating from the main crack in spot weld specimens, the
local stress intensity factor solutions should be dominated by the distributions of the global stress intensity
factor solutions near the shallow kinked cracks. Fig. 4(a) shows a schematic plot of a lap-shear specimen
under the applied force P. As shown in Fig. 4(a), the critical locations with the maximum global mode I and
II stress intensity factor solutions are marked as point A and point B, and the critical locations with the
maximum global mode III stress intensity factor solution are marked as point C and point D. Fig. 4(b)
shows a circular cylinder which represents the nugget in the lap-shear specimen. A semi-elliptical kinked
crack with a kink angle a = 90� is shown to grow from the main crack. The kinked and main crack fronts
are marked in the figure. Fig. 4(c) schematically shows the semi-elliptical kinked crack in the circumferen-
tial and depth directions. The location of point P of the kinked crack front can be specified by that of the
corresponding point Q on the main crack front, which can then be characterized by the orientation angle h
as defined in Fig. 4(b). As shown in Fig. 4(c), point E represents the location of the maximum kink depth.
The maximum kink depth is denoted as d and the half kinked crack length is denoted as c. As shown in
Wang et al. (2005), the local stress intensity factor solutions approach to those based on the global stress
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Fig. 4. (a) A schematic plot of a lap-shear specimen and the applied force P shown as the bold arrows. The weld nugget is idealized as a
circular cylinder and shown as a shaded cylinder. The critical locations with the maximum mode I and II stress intensity factor
solutions are marked as points A and B. The critical locations with the maximum mode III stress intensity factor solution are marked
as points C and D. (b) A circular cylinder represents a nugget of the specimen in the lap-shear specimen. A semi-elliptical kinked crack
is also shown. (c) A schematic plot of the semi-elliptical kinked crack in the circumferential and depth directions. (d) A schematic plot
of a shallow semi-elliptical kinked crack just initiated from the main crack.
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intensity factor solutions and the analytical kinked crack solutions in Eqs. (1) and (2) with the kink angle
a = 90� under axisymmetric loading conditions as the kink depth decreases for sharp main cracks in cup
specimens. Therefore, as the normalized maximum kink depth d/t decreases (as shown in Fig. 4(d)), the
local stress intensity factor solutions should approach to those for vanishing kink depth based on the global
stress intensity factor solutions and the analytical kinked crack solutions in Eqs. (1)–(3).

The local stress intensity factor solutions along the kinked crack front should be functions of the circum-
ferential location denoted by h (as defined in Fig. 4(b)). However, when d/t, d/c and c/b change, the local
stress intensity factor solutions should also change. Therefore, the local stress intensity factor solutions at
point P as shown in Fig. 4(c) can be expressed as
ki ¼ kiðh; d=t; d=c; c=b;KI;KII;KIIIÞ; i ¼ I; II; III ð4Þ

Here, the local stress intensity factor ki solutions are functions of the orientation angle h, the normalized
maximum kink depth d/t, the aspect ratio d/c of the semi-elliptical kinked crack, the normalized kinked
crack length or the angle span of the kinked crack c/b, and the entire distributions of the global stress inten-
sity factors KI, KII and KIII. Note that the entire distributions of the global Ki along the nugget circumfer-
ence can influence the local ki solutions at h for a given set of d/t, d/c and c/b. However, the global Ki

solutions close to the kinked crack front should have dominant effects on the local ki solutions along the
kinked crack front. Here, we lump all the effects of geometry and loading of the specimen to the distribu-
tions of the global stress intensity factor Ki solutions along the main crack front.

As indicated in Wang et al. (in press) for lap-shear specimens, the global stress intensity factor Ki solu-
tions can be influenced by the geometry of the specimen, namely,
Ki ¼ Kiðh; t; b; t=b;W =b; V =b; L=bÞ; i ¼ I; II; III ð5Þ

Therefore, in order to accurately investigate and specify the local ki solutions of kinked cracks in spot weld
specimens, the number of cases needed to be considered is rather large. In this investigation, we will con-
centrate on the local ki solutions at the maximum kink depths for several kink depths, a given aspect ratio
d/c of the semi-elliptical kinked crack, and a specific specimen geometry of Lin et al. (in press). Our goals
are to understand the general effects of the finite kink depth on the local ki solutions and the link between
the local ki solutions for finite kink depths and the local ki solutions for vanishing kink depth based on the
global Ki solutions and the analytical kink crack solutions in Eqs. (1) and (2).

Note that the local stress intensity factor solutions for kinked cracks with several kink depths in lap-shear
specimens were obtained in Pan and Sheppard (2003) for their lap-shear and modified coach peel specimens.
But the solutions are not presented in terms of the closed-form kinked crack solutions. Note that Newman
and Dowling (1998), Lin and Pan (2004) and Lin et al. (in press) adopted the closed-form local stress inten-
sity factor solution for kinked cracks with a vanishing kink depth in their two-dimensional fatigue model to
estimate the fatigue lives of spot welds in lap-shear specimens. Recently, due to advancement of friction stir
welding technology, continuous lap joints were produced for aluminum sheets (Scafe and Joaquin, 2004).
The fatigue life analyses of these continuous lap joints based on the local stress intensity factor solutions
for kinked cracks are also needed. Therefore, we also examine the local stress intensity factor solutions
for kinked cracks with several kink depths based on a two-dimensional plane-strain finite element model.
3. A finite element analysis with no kinked crack

3.1. Three-dimensional finite element model

In order to obtain the local stress intensity factor solutions for kinked cracks with a vanishing kink
depth, a three-dimensional finite element analysis is first carried out to obtain the global stress intensity
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factor solutions for the crack front along the nugget circumference. The finite element model for lap-shear
specimens is evolved from the three-dimensional finite element model for two circular plates with connec-
tion, where a mesh sensitivity study was carried out to benchmark the global stress intensity factor solution
to a closed-form solution under axisymmetric loading conditions (Wang et al., 2005). The details to select
an appropriate three-dimensional mesh for obtaining accurate stress intensity factor solutions for spot
welds can be found in Wang et al. (2005) and Wang et al. (in press).

Due to symmetry, only a half lap-shear specimen is considered. Fig. 5(a) shows a schematic plot of a half
lap-shear specimen. The specimen has the sheet thickness t (=0.65 mm), the length L (=77.3 mm), the half
width W (=18.9 mm), and the nugget radius b (=3.2 mm) according to the dimensions of the lap-shear
specimens used in Lin et al. (in press). The overlap length V of the upper and lower sheets is 47.1 mm.
The two spacers have the length S (=4.6 mm). Both the upper and lower sheets have the same thickness.
A Cartesian coordinate system is also shown in the figure. As shown in Fig. 5(a), a uniform displacement
is applied in the �x direction to the left edge surface of the specimen, and the displacements in the x, y and z
directions for the right edge surface of the specimen are constrained to represent the clamped boundary
conditions in the experiment. The displacement in the y direction of the symmetry plane, the x–z plane,
is constrained to represent the symmetry conditions due to the loading conditions and the geometry of
the specimen. Fig. 5(b) shows a mesh for a left half finite element model. Fig. 5(c) shows a close-up view
of the mesh near the main crack tip. Note that the main crack is modeled as a sharp crack here. The three-
dimensional finite element mesh near the weld nugget is evolved from the three-dimensional finite element
mesh for two circular plates with connection as discussed in Wang et al. (2005). As shown in Fig. 5(c), the
Fig. 5. (a) A schematic plot of a half lap-shear specimen with a uniform displacement applied to the left edge surface of the specimen
shown as the bold arrows and the clamped boundary conditions for the right edge surface of the specimen. The shaded region
represents the half weld nugget. (b) A mesh for a left half finite element model. (c) A close-up view of the mesh near the main crack tip.
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mesh near the center of the weld nugget is refined to ensure reasonable aspect ratios of the three-dimen-
sional brick elements. The three-dimensional finite element model for the half lap-shear specimen has
34,248 20-node quadratic brick elements. The main crack surfaces are also shown as bold lines in Fig. 5(c).

In this investigation, the weld nugget and the base metal are assumed to be linear elastic isotropic mate-
rials. The Young�s modulus E is taken as 200 GPa, and the Poisson�s ratio m is taken as 0.3. The commercial
finite element program ABAQUS (Hibbitt et al., 2001) is employed to perform the computations. Brick ele-
ments with quarter point nodes and collapsed nodes along the crack front are used to model the 1=

ffiffi
r

p
sin-

gularity near the crack tip. The computational stress intensity factor solutions are obtained based on the
interaction integral method for cracks under mixed-mode loading conditions (Shih and Asaro, 1988).
The stress intensity factor solutions are directly computed by ABAQUS.

First, the distributions of the global stress intensity factor solutions along the circumference of the nug-
get are examined here. Fig. 6 shows a top view of a nugget with a cylindrical coordinate system centered at
the nugget center. An orientation angle h is measured counterclockwise from the critical location of point
B. Fig. 7 shows the normalized KI, KII and KIII solutions as functions of h for the crack front along the
nugget circumference based on our three-dimensional finite element computations for the lap-shear speci-
men with t/b = 0.2, W/b = 5.91, V/b = 14.72 and L/b = 24.16 (Wang et al., in press). Note that the KI, KII

and KIII solutions are normalized by the KII solution at the critical location of point A (h = 180�). Due to
the symmetry, we only show the results from h = 0� to 180�. As shown in Fig. 7, the maxima of the KI solu-
tion are located at point B (h = 0�) and point A (h = 180�), the maximum and minimum of the KII solution
are located at point A (h = 180�) and point B (h = 0�), respectively, and the maximum of the KIII solution is
located at point D (h = 90�). The results shown in Fig. 7 indicate that the global KII is the dominant global
stress intensity factor in lap-shear specimens under shear dominant loading conditions. The distributions of
the global stress intensity factor solutions along the circumference of the nugget as shown in Fig. 7 are sim-
ilar to those in Radaj et al. (1990). The results shown in Fig. 7 were also reported in Wang et al. (in press).
The results shown in Fig. 7 will be used as the basis to report the local stress intensity factor solutions for
kinked cracks with vanishing kink depth. Note that Lin et al. (to be submitted for publication) recently
derived the KI solution for a spot weld connecting at the center of two square plates under an applied coun-
ter bending moment M0 along the two edges of each plate per unit length as
Fi
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A B
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r

g. 6. A top view of a nugget with an orientation angle h defined as shown. See Fig. 4(a) for the locations of points A–D.
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KI ¼
M0

ffiffiffi
3

p

t
ffiffi
t

p
XY

X ½Y � b2ð�1þ mÞ þ W 2ð�1þ mÞ� � Y ½�X þ b8ð�1þ mÞ
�

þ2b4W 4ð1þ mÞ � 4b2W 6ð1þ mÞ þ W 8ð3þ mÞ�
�
cosð2hÞ ð6Þ
where b is the radius of the spot weld, t is the thickness of the plate, 2W is the width of the plate, and m is the
Poisson�s ratio of the plate material. Here, X and Y are defined as
X ¼ ð�1þ mÞðb4 þ W 4Þ2 � 4b2W 6ð1þ mÞ ð7Þ

Y ¼ b2ð�1þ mÞ � W 2ð1þ mÞ ð8Þ

The maximum magnitude of KI is located at h = 0� (point B) and h = 180� (point A). The details for the
derivation of the KI solution in Eq. (6) are reported in Lin et al. (to be submitted for publication).

3.2. Local stress intensity factor solutions for vanishing kink depth

Fig. 8 shows the normalized local kI, kII and kIII solutions as functions of h for the crack front from
h = 90� to 180� along the nugget circumference of the lap-shear specimen. We only examine this range
of h since the local kI solution from h = 90� to 270� is positive for the loading condition shown in
Fig. 5(a). The local kI, kII and kIII solutions are determined from the global KI, KII and KIII solutions based
on our three-dimensional finite element computations and the analytical kinked crack solutions in Eqs. (1)–
(3) with the kink angle a = 90�. The cylindrical coordinate system (r,h,z) which is used to describe the ori-
entation of h is shown in Fig. 6. Note that the local kI, kII and kIII solutions are normalized by the local kI
solution at the critical location of point A (h = 180�). As shown in Fig. 8, the maximum of the local kI solu-
tion is located at the critical location of point A (h = 180�). Therefore, a small kinked crack can emanate
from point A (h = 180�) and grow to the sheet surface of the specimen due to the high value of the local kI.
Note that the maximum of the local kII solution is also located at the critical location of point A (h = 180�).
Note that for a given mixture of KI and KII or a given ratio of KI to KII, a kink angle a can be found such
that the local kI is maximum and the local kII is 0 (Pook, 1975; Newman and Dowling, 1998; Lin and Pan,
2004). A kinked crack with this kink angle a can grow under pure local mode I conditions. However, due to
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different crack growth resistances for different microstructures near the main crack, the kinked crack grows
in the direction of the least fatigue resistance. Based on the experimental observations, the kink angle a for
kinked fatigue cracks appears to be close to 90� in lap-shear specimens (Lin et al., to be submitted for
publication).
4. Finite element analyses for finite kinked cracks

4.1. Three-dimensional finite element models

After a kinked crack emanating from the main crack, the local stress intensity factor solutions at the
kinked crack tip are different from the global stress intensity factor solutions for the main crack in lap-shear
specimens under the applied loading condition. This general trend was shown for cup specimens based on
axisymmetric finite element analyses in Wang et al. (2005). Here, three-dimensional finite element models
are employed to investigate the local stress intensity factor solutions for kinked cracks with different kink
depths in lap-shear specimens. Four maximum kink depths are considered, namely, d/t = 0.05, 0.2, 0.5 and
0.7. Here, d and t represent the maximum kink depth and the specimen thickness, respectively. Note that
according to the experimental observations of Swellam et al. (1992), kinked cracks can form at the critical
locations (either point A or point B as shown in Fig. 4(a)) in a lap-shear specimen. However, a single kinked
crack usually became dominant and resulted in the specimen failure. In our finite element models for lap-
shear specimens, only one kinked crack emanating from the main crack is modeled on one side of the weld
nugget in the specimen.

Fig. 9(a) again shows a schematic plot of a half lap-shear specimen. The specimen has the same dimen-
sions as those of the lap-shear specimens used in Lin et al. (in press) as discussed earlier. The two spacers
have the length S (=4.6 mm). The nugget radius b is 3.2 mm. Both the upper and lower sheets have the same
thickness. The kinked crack front with the maximum kink depth d is shown as dashed lines in the figure.
Fig. 9(a) also shows the loading and boundary conditions applied to the lap-shear specimen. The loading,
boundary and symmetry conditions of the half specimen are the same as those discussed earlier for
Fig. 5(a).



Fig. 9. (a) A schematic plot of a half lap-shear specimen with a uniform displacement applied to the left edge surface of the specimen
shown as the bold arrows and the clamped boundary conditions of the right edge surface of the specimen. (b) A mesh for a left half
three-dimensional finite element model. (c) A close-up view of the mesh near the kinked crack.
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The mesh for a left half finite element model with d/t = 0.5 is shown in Fig. 9(b). A close-up view of the
mesh near the kinked crack is shown in Fig. 9(c). The aspect ratio of the maximum kink depth d to the half
length c along the nugget circumference for the semi-elliptical kinked crack is taken as 0.4 as in Pan and
Sheppard (2003). As shown in Fig. 9(c), the mesh of the weld nugget is removed to display the mesh for
the kinked crack clearly. The main crack and the kinked crack fronts are shown as dashed lines in the fig-
ure. The main crack surfaces are shown as solid lines in the figure. The three-dimensional finite element
mesh near the nugget is based on the three-dimensional finite element model for two circular plates with
connection as discussed in Wang et al. (2005). The three-dimensional finite element model for a half lap-
shear specimen with the kinked crack for d/t = 0.5 has 56,172 20-node quadratic brick elements.

4.2. Two-dimensional plane-strain finite element models

Investigation of the local stress intensity factor solutions for kinked cracks in lap-shear specimens by
three-dimensional finite element analyses is computationally intensive and tedious. In order to investigate
the applicability of two-dimensional finite element analyses to obtain the local stress intensity factor solu-
tions for kinked cracks in lap-shear specimens, two-dimensional plane-strain finite element models are
developed. The common parameters of the two-dimensional and three-dimensional models are the sheet
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thickness t, the specimen length L, the overlap length V and the length of two spacers S. The weld nugget in
the three-dimensional model has a radius b whereas the weld in the two-dimensional plane-strain model has
a size 2b. Four kink depths are considered, namely, d/t = 0.05, 0.2, 0.5 and 0.7. Here, d and t represent the
kink depth and the specimen thickness, respectively. The main crack is modeled as a sharp crack. Note that
continuous lap joints of two aluminum sheets by friction stir welding have been used to produce automotive
components (Scafe and Joaquin, 2004). Therefore, the local stress intensity factor solutions for kinked
cracks obtained from the two-dimensional finite element analysis are also useful to assess the fatigue lives
of the continuous lap joints.

Fig. 10(a) shows a schematic plot of a lap-shear specimen. The specimen has the sheet thickness t

(=0.65 mm), the length L (=77.3 mm) and the nugget radius b (=3.2 mm) according to the dimensions
of the symmetry cross-section of the lap-shear specimens used in Lin et al. (in press). Both the upper
and lower sheets have the same thickness. The length S of the two spacers is 4.6 mm, and the overlap length
V of the upper and lower sheets is 47.1 mm. A kinked crack is shown as dashed lines in the figure. Note that
the two-dimensional plane-strain finite element model has a unit length in the width direction. Fig. 10(a)
also shows the loading and boundary conditions applied to the two-dimensional plane-strain finite element
model. A Cartesian coordinate system is also shown in the figure. As shown in Fig. 10(a), the displacements
Fig. 10. (a) A schematic plot of a lap-shear specimen with the applied loads and the boundary conditions. (b) A schematic plot of the
loading condition near the left edge surface of the specimen. (c) A mesh of the left part of the two-dimensional plane-strain finite
element model with d/t = 0.5. (d) A close-up view of the mesh near the main crack tip for the model with d/t = 0. (e) A close-up view of
the mesh near the main crack tip for the model with d/t = 0.5.
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in the x and y directions for the right edge surface of the specimen are constrained to represent the clamped
boundary conditions. A concentrated load N and a moment M (=1.8Nt) per unit width are applied in the
�x direction and counterclockwise, respectively, to the center of the left edge surface of the specimen.
Fig. 10(b) is a schematic plot of the loading condition near the left edge surface of the specimen of the
two-dimensional plane-strain finite element model. The moment is applied through two concentrated forces
of the same magnitude but in the opposite directions of x and �x at the equal distance to the mid-plane of
the left edge surface. Under this combination of N and M, the value of the global stress intensity factor
ratio KI/KII is 0.62 for the two-dimensional plane-strain finite element model with d/t = 0. This ratio is
the same as that at the critical locations of the corresponding three-dimensional finite element model with
d/t = 0. The mesh of the left part of the two-dimensional plane-strain finite element model for the lap-shear
specimen with d/t = 0.5 is shown in Fig. 10(c). Close-up views of the meshes near the main crack tips for the
lap-shear specimens with d/t = 0 and 0.5 are shown in Fig. 10(d) and (e), respectively. The main crack sur-
face and kinked crack surface are shown as dashed lines in the figure.

4.3. Computational results for kinked cracks

The normalized maximum local kI and kII solutions at point E of the maximum kink depth (as shown in
Fig. 9(c)) for the lap-shear specimen are plotted as functions of the normalized maximum kink depth d/t in
Figs. 11 and 12, respectively. The maximum local kI and kII solutions are normalized by (kI)0,3DFEM. Here,
(kI)0,3DFEM is the local kI solution for vanishing kink depth based on our three-dimensional finite element
computation for the lap-shear specimen with d/t = 0 and the analytical kinked crack solution in Eq. (1)
with the kink angle a = 90�. The normalized local kI and kII solutions for the two-dimensional lap-shear
specimen are also plotted as functions of the normalized kink depth d/t in Figs. 11 and 12, respectively.
For the two-dimensional lap-shear specimens, the local kI and kII solutions are normalized by (kI)0,2DFEM.
Here, (kI)0,2DFEM is the local kI solution for vanishing kink depth based on our two-dimensional plane-
strain finite element computation for the lap-shear specimen with d/t = 0 and the analytical kinked crack
solution in Eq. (1) with the kink angle a = 90�.

Fig. 11 shows that when the maximum kink depth approaches to 0, the local kI solutions based on our
three-dimensional and two-dimensional plane-strain finite element computations appear to approach to
20

15

10

5

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Normalized maximum kink depth d/t

k I
k(/

I)
M

E
F

D3,0
k

dna
I

k(/
I)

M
E

F
D2,0

3D FEM with kinked crack
2D planestrain FEM with kinked crack
3D FEM w/o kinked crack
2D planestrain FEM w/o kinked crack

Fig. 11. The normalized local kI solutions as functions of the normalized maximum kink depth d/t based on our three-dimensional and
two-dimensional plane-strain finite element computations for the lap-shear specimen.
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(kI)0,3DFEM and (kI)0,2DFEM, respectively. Fig. 11 also shows that the maximum local kI solution based on
our three-dimensional finite element computations increases as the maximum kink depth increases to a half
sheet thickness. As the maximum kink depth further increases to 70% of the sheet thickness, the maximum
local kI solution based on our three-dimensional finite element computations decreases slightly. However,
the local kI solution based on our two-dimensional plane-strain finite element computations increases
monotonically as the kink depth increases to 70% of the sheet thickness. Since the local kI solution based
on our two-dimensional plane-strain finite element computations does not correlate with that based on our
three-dimensional finite element computations, the kinked crack model based on our two-dimensional
plane-strain finite element model for the lap-shear specimen may not be appropriate to be used for estima-
tion of the local kI solution for the three-dimensional kinked cracks. Note that for the three-dimensional
kinked crack model, as the maximum kink depth increases, the local load carrying capacity of the remain-
ing ligament EF (as shown in Fig. 9(c)) at the critical location possibly decreases due to the redistribution of
the load carrying capacity to the remaining ligament of the entire kinked crack front and the entire circum-
ference of the nugget. However, for the two-dimensional kinked crack model, redistribution of the local
load carrying capacity cannot occur. Therefore, the local kI solution based on the two-dimensional finite
element computations increases substantially as the kink depth increases.

It should be noted that based on the results presented in Fig. 11, the two-dimensional plane-strain model
may not be appropriate for the lap-shear spot weld specimen. However, it can be used to model the kinked
cracks emanating from continuous lap joints made by the new friction stir welding technology for alumi-
num sheets (Scafe and Joaquin, 2004). The local stress intensity factor solutions obtained here for kinked
cracks with several kink depths based on the two-dimensional plane-strain finite element model can be
applied to the fatigue life predictions of these continuous lap joints.

Note that according to the definition of the local kII specified in Fig. 1, the local kII is negative. Fig. 12
shows that the magnitude of the local kII solution based on our three-dimensional finite element computa-
tions decreases as the maximum kink depth increases to a half sheet thickness and increases slightly as the
maximum kink depth further increases to 70% of the sheet thickness. On the other hand, the magnitude of
the local kII solution based on our two-dimensional plane-strain finite element computations decreases
monotonically as the maximum kink depth increases from 0% to 70% of the sheet thickness. Fig. 12 also
shows that when the maximum kink depth approaches to 0, the magnitude of the local kII solution based on
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our three-dimensional finite element computations appears to approach to that for vanishing kink depth
based on our three-dimensional finite element computation for d/t = 0 and the analytical kinked crack solu-
tion in Eq. (2) with the kink angle a = 90�. However, as shown in Fig. 12, when the kink depth approaches
to 0, the magnitude of the local kII solution based on our two-dimensional plane-strain finite element com-
putations appears not to approach quickly to that for vanishing kink depth based on our two-dimensional
plane-strain finite element computation for d/t = 0 and the analytical kinked crack solution in Eq. (2) with
a = 90�. Theoretically speaking, as d/t decreases, the magnitude of the local kII solution based on our two-
dimensional plane-strain finite element computations should approach to that for vanishing kink depth
based on our two-dimensional plane-strain finite element computation for d/t = 0 and the analytical kinked
crack solution in Eq. (2) with a = 90�. However, the approach to the theoretical value appears to be quite
slowly for this case (Wang et al., 2005).

For potential future applications, Table 1 lists the normalized maximum local kI and kII solutions at the
critical locations (point A and point B as shown in Fig. 4(a)) based on our three-dimensional finite element
computations and the analytical kinked crack solutions in Eqs. (1) and (2) with the kink angle a = 90�.
Table 2 lists the normalized local kI and kII solutions based on our two-dimensional plane-strain finite ele-
ment computations under the combined load of N and M (=1.8Nt). For completeness, Tables 3 and 4 list
the normalized local kI and kII solutions based on our two-dimensional plane-strain finite element compu-
tations under pure N and pure M loading conditions, respectively. As listed in Tables 2–4, when the nor-
malized kink depth increases, the normalized local kI solution increases substantially. The details on the
global KI and KII solutions for continuous lap joints can be found in Lin et al. (to be submitted for pub-
lication). Based on the superposition principle of linear elasticity, when the global KI and KII solutions are
Table 1
The normalized maximum local kI and kII solutions at the critical locations (points A and B as shown in Fig. 4(a)) for several values of
the normalized maximum kink depth d/t based on our three-dimensional finite element computations and the analytical kinked crack
solutions in Eqs. (1) and (2) with the kink angle a = 90�

d/t 0 0.05 0.2 0.5 0.7
kI/(kI)0,3DFEM 1.00 1.13 1.56 1.75 1.49
kII/(kI)0,3DFEM �0.45 �0.36 �0.20 �0.11 �0.13

Table 2
The normalized local kI and kII solutions for several values of the normalized kink depth d/t based on our two-dimensional plane-strain
finite element computations and the analytical kinked crack solutions in Eqs. (1) and (2) with the kink angle a = 90� under the
combined load of N and M (=1.8Nt)

d/t 0 0.05 0.2 0.5 0.7
kI/(kI)0,2DFEM 1.00 1.71 2.96 7.69 18.97
kII/(kI)0,2DFEM �0.45 �0.26 �0.18 �0.11 �0.10

Table 3
The normalized local kI and kII solutions for several values of the normalized kink depth d/t based on our two-dimensional plane-strain
finite element computations and the analytical kinked crack solutions in Eqs. (1) and (2) with the kink angle a = 90� under pure N

(M = 0) loading conditions

d/t 0 0.05 0.2 0.5 0.7
kI/(kI)0,2DFEM 1.00 1.62 2.58 5.86 12.80
kII/(kI)0,2DFEM �0.49 �0.30 �0.20 �0.07 �0.02



Table 4
The normalized local kI and kII solutions for several values of the normalized kink depth d/t based on our two-dimensional plane-strain
finite element computations and the analytical kinked crack solutions in Eqs. (1) and (2) with the kink angle a = 90� under pure M

(N = 0) loading conditions

d/t 0 0.05 0.2 0.5 0.7
kI/(kI)0,2DFEM 1.00 1.57 2.35 4.79 9.12
kII/(kI)0,2DFEM �0.52 �0.33 �0.21 �0.05 0.02
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available for a given combination of N and M, the local kI and kII solutions for various kink depths can be
estimated from the normalized solutions listed in Tables 3 and 4. Note that for the given direction of M as
shown in Fig. 10(b), the local kI solutions for various kink depths are negative. The direction ofM is needed
to give the ratio KI/KII = 0.62. The details will be explained in Lin et al. (to be submitted for publication).

It should be noted that for semi-elliptical kinked cracks emanating from the main crack, the maximum
values of the local kI and kII solutions occur at point E (as shown in Fig. 9(c)). As indicated in Eqs. (4) and
(5), the local kI and kII solutions are affected by the global KI, KII and KIII solutions which are in turn
affected by the geometry of the specimen. In our investigation, we have selected t/b = 0.20, d/c = 0.40,
W/b = 5.91, V/b = 14.72 and L/b = 24.16. Note that Pan and Sheppard (2003) obtained the local kI and
kII solutions for t/b = 0.47, d/c = 0.40, W/b = 5.50, V/b = 10 and L/b = 21. Figs. 13 and 14 show compar-
isons of the normalized local kI and kII solutions based on our three-dimensional finite element computa-
tions and the three-dimensional finite element computations of Pan and Sheppard (2003). Our
computational local kI and kII solutions are normalized by the local kI solution for vanishing kink depth
based on our computational global KI and KII solutions for d/t = 0 and the analytical kinked crack solution
in Eq. (1) with the kink angle a = 90�. Note that Pan and Sheppard (2003) used the surface crack solution
of Newman and Raju (1981) to fit their computational solutions. For a fair comparison, the computational
local kI and kII solutions of Pan and Sheppard (2003) are now normalized by the local kI solution for van-
ishing kink depth based on the global KI and KII solutions of Pan and Sheppard (2003) for d/t = 0 and the
analytical kinked crack solution in Eq. (1) with the kink angle a = 90�. Here, we link the local kI and kII
solutions for the kinked cracks with different kink depths to those for vanishing kink depth based on
the global KI and KII solutions for d/t = 0 and the analytical kinked crack solutions in Eqs. (1) and (2).
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Fig. 13. The normalized local kI solutions as functions of the normalized maximum kink depth d/t based on our three-dimensional
finite element computations and the three-dimensional finite element computations of Pan and Sheppard (2003).
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Fig. 14. The magnitudes of the normalized local kII solutions as functions of the normalized maximum kink depth d/t based on our
three-dimensional finite element computations and the three-dimensional finite element computations of Pan and Sheppard (2003).
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As shown in Fig. 13, when the normalized maximum kink depth d/t approaches to 0, the local kI solu-
tions based on our three-dimensional finite element computations and those based on the three-dimensional
finite element computations of Pan and Sheppard (2003) appear to approach to our local kI solution and
the local kI solution of Pan and Sheppard (2003) for d/t = 0, respectively. As the normalized maximum kink
depth d/t increases, the local kI solutions based on our three-dimensional finite element computations and
the three-dimensional finite element computations of Pan and Sheppard (2003) increase then decrease. The
general trend of our computational kI solution is the same as that of Pan and Sheppard (2003). Based on
our three-dimensional finite element computations, the critical local mode I stress intensity factor solution
can increase up to 75% as the maximum kink depth increases to a half sheet thickness, and then decreases
slightly as the maximum kink depth further increases to 70% of the sheet thickness. But the increase of the
critical local mode I stress intensity factor solutions of Pan and Sheppard (2003) is not as high as our com-
putational results. Note that we normalize the kI solutions by the kI solution for the kinked crack with van-
ishing kink depth based on the global stress intensity factor solutions. If we concentrate on the effects of the
kinked crack geometries for the two cases, the major difference for the two cases is that the angular span c/b
is larger for the kinked crack model of Pan and Sheppard (2003) due to the large ratio of t/b for the same
normalized maximum kink depth d/t. Note that the kinked cracks of the two cases have the same aspect
ratio d/c. However, without a systematic analysis, no conclusion can be made from the available two sets
of solutions.

As shown in Fig. 14, when the normalized maximum kink depth d/t approaches to 0, the magnitude of
the local kII solutions based on our three-dimensional finite element computations and those based on the
three-dimensional finite element computations of Pan and Sheppard (2003) appear to approach to our local
kII solution and the local kII solution of Pan and Sheppard (2003) for d/t = 0, respectively. As the normal-
ized maximum kink depth d/t increases, the magnitudes of the local kII solutions based on our three-dimen-
sional finite element computations and the three-dimensional finite element computations of Pan and
Sheppard (2003) decrease then increase. The general trend of our computational kII solution is the same
as that of Pan and Sheppard (2003).

Note that a mesh sensitivity study for the finite element model with no kinked cracks used in this inves-
tigation has been performed in Wang et al. (2005). The global stress intensity factor solution based on the
finite element model was well benchmarked to the analytical solution for circular plates with connection
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and cylindrical cup specimens under axisymmetric loading conditions. Also, the finite element models with
no kinked cracks used in this investigation were used to investigate the specimen size effects on the global
stress intensity factor solutions in Wang et al. (in press). The computational results indicate that when the
spot weld becomes small compared to the width, length, and overlap length of the specimen, the stress
intensity factor solutions are in agreement with the analytical solutions. Moreover, when the kink length
decreases to zero, the stress intensity factor solutions for kinked cracks based on the finite element models
with kinked cracks were shown be consistent with those based on the global stress intensity solutions and
the analytical solutions in Wang et al. (in press).

On the other hand, Pan and Sheppard (2003) used the sub-modeling technique in ABAQUS (Hibbitt
et al., 2001) to obtain their stress intensity factor solutions. Pan and Sheppard (2003) did not report a mesh
sensitivity study and did not examine the accuracy of their global or local stress intensity factor solutions
with respect to known analytical solutions. However, the geometric factors such as t/b, W/b, L/b, and V/b
are different for the specimens of Lin et al. (in press) and Pan and Sheppard (2003). Therefore, the global
and local stress intensity factor solutions can be different. But the most important feature shown in Figs. 13
and 14 is that the general trends of the local kI and kII solutions are quite similar for the specimens of Lin
et al. (in press) and Pan and Sheppard (2003).
5. Conclusions and discussions

Three-dimensional and two-dimensional plane-strain finite element analyses are carried out to investi-
gate the local stress intensity factor solutions for kinked cracks with various kink depths in lap-shear spec-
imens. The local stress intensity factor solutions at the critical locations of the kinked cracks are obtained.
The computational local stress intensity factor solutions at the critical locations of the kinked cracks of
finite depths are expressed in terms of those for vanishing kink depth based on the global stress intensity
factor solutions and the analytical kinked crack solutions for vanishing kink depth. The three-dimensional
finite element computational results show that the critical local mode I stress intensity factor solution
increases and then decreases as the kink depth increases. When the kink depth approaches to 0, the critical
local mode I stress intensity factor solution appears to approach to that for vanishing kink depth based on
the global stress intensity factor solutions and the analytical kinked crack solutions for vanishing kink
depth. The two-dimensional plane-strain computational results indicate that the critical local mode I stress
intensity factor solution increases monotonically and increases substantially more than that based on the
three-dimensional computational results as the kink depth increases. The local stress intensity factor solu-
tions of the kinked cracks of finite depths are also presented in terms of those for vanishing kink depth
based on the global stress intensity factor solutions and the analytical kinked crack solutions for vanishing
kink depth.

Note that Pan and Sheppard (2003) used the basic forms of the stress intensity factor solutions for sur-
face cracks of Newman and Raju (1981) to fit their local kI and kII solutions for several kink depths. The
local kI and kII solutions approach to 0 based on the fitted equations in Pan and Sheppard (2003) when the
kink depth approaches to 0. This is not consistent with the fundamentals of the kinked crack solutions and
our computational results and, therefore, the fitted equations should not be used for small kink depths.
Note that the bulk of the fatigue life of spot welds under lap-shear loading conditions is due to stage I crack
growth with small kink depths (Swellam et al., 1992). Therefore, accurate local stress intensity factor solu-
tions are needed for small and finite kinked depths. In contrast to the approach taken by Pan and Sheppard
(2003), the local stress intensity factor solutions for kinked cracks of finite depths are expressed in terms of
those for vanishing kink depth based on the global stress intensity factor solutions and the analytical
kinked crack solutions for vanishing kink depth. The local kI and kII solutions appear to be well charac-
terized by the local stress intensity factor solutions for vanishing kink depth as shown in Figs. 13 and
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14. Note that the general solutions of the local kI, kII and kIII solutions should have the forms as indicated
in Eq. (4). A systematic investigation is needed to obtain the local kI, kII and kIII solutions along the kinked
crack front as functions of h, d/t, d/c, c/b, t, b, t/b, W/b, V/b and L/b. However, the computational cost
would be significant and prohibitively high.

The fatigue crack growth models proposed by Newman and Dowling (1998) and Lin and Pan (2004) are
based on the assumptions that the local stress intensity factor solutions are nearly constant for kinked crack
growth through the sheet thickness and the local stress intensity factor solutions are based on the global
stress intensity factor solutions and the analytical kinked crack solutions in Cotterell and Rice (1980) for
vanishing kink depth. For lap-shear specimens, the assumption of the constant local stress intensity factor
solutions seems reasonable based on the three-dimensional finite element computational results obtained in
this investigation and the computational results of Pan and Sheppard (2003) that we presented in terms of
the kinked crack solutions for vanishing kink depth.

In Lin et al. (in press), the predictions of fatigue lives for lap-shear specimens of dual phase steel based
on the fatigue crack growth model are slightly lower than the experimental results. The selection of the
material constants for the Paris law is based on those for martensitic steels by consideration of the welding
process. If the local stress intensity factor solutions for kinked cracks based on our three-dimensional finite
element computations are to be used to predict the fatigue lives of spot welds in lap-shear specimens, the
fatigue lives will be substantially lower than the experimental results. Unfortunately, the material constants
for the Paris law for the material along the kinked crack paths near the dual phase spot welds are not avail-
able. But based on the fatigue crack growth model with consideration of higher local stress intensity factor
solutions, the selection of the material constants should be made different in the fatigue crack growth model
in Lin and Pan (2004) in order to match with the experimental results. Further investigations of kinked
crack growth mechanisms and the fatigue crack growth resistance are needed for this case. Finally, the
stress intensity factor solutions for kinked cracks with finite kink lengths are needed for accurate prediction
of fatigue lives of spot welds. The stress intensity factor solutions for different normalized kink lengths pre-
sented in this paper have been adopted to predict the fatigue lives of aluminum spot friction welds in Lin
et al. (2005). Further applications of the stress intensity factor solutions for kinked cracks with finite crack
lengths are anticipated.
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